标签搜索

目 录CONTENT

文章目录

神经网络预测数据(LSTM、ResNet)

陈铭
2022-01-25 / 0 评论 / 0 点赞 / 231 阅读 / 527 字 / 正在检测是否收录...

首先是LSTM网络,写了注释,不多赘述

import numpy as np
import torch
from torch import nn
from torch import nn
from torch.nn import functional

class lstmNet(nn.Module):
    def __init__(self):
        super(lstmNet, self).__init__()
        input_size=30 # 输入的维度
        hidden_size=300 # hidden_layer的数目,即输出的维度
        vectorSize=50 # 单个数据的向量大小
        # [batchSize,30] --> [batchSize,30,vectorSize]
        # 词嵌入,生成一个字典,帮助将数据转成向量
        # 2000000:我们的数据数量最大不超过2000000个,因此,这也是字典的大小
        self.embedding= nn.Embedding(2000000,vectorSize)
        # [batchSize,30,vectorSize] --> [batchSize,30,hidden_size]
        self.lstm = nn.LSTM(
            input_size=vectorSize,
            hidden_size=hidden_size,  # hidden_layer的数目,即输出的维度
            num_layers=5,
            batch_first=True,  # 输入数据的维度一般是(batch, squence, vector),该属性表征batch是否放在第一个维度
        )

        # [batchSize,30,hidden_size] --> [batchSize,30,1]
        # self.fc1 = nn.Linear(hidden_size, 1)
        # [batchSize,30] --> [batchSize,1]
        self.fc = nn.Linear(input_size*hidden_size, 1)

    def forward(self, x):
        x=x.int()
        x=self.embedding(x)
        x = x.float()
        x=torch.reshape(x, (x.shape[0],x.shape[1], x.shape[2] * x.shape[3]))
        output,h_c = self.lstm(x)
        output = torch.reshape(output, (-1, output.shape[1] * output.shape[2]))
        output = functional.relu(self.fc(output))
        # output = functional.relu(self.fc2(output))
        return output

然后是ResNet网络

from torch import nn
from torch import nn
from torch.nn import functional

class resBlock(nn.Module):
    def __init__(self, inputChannel,outputChannel):
        super(resBlock, self).__init__()

        self.linear1 = nn.Linear(inputChannel, outputChannel)
        self.bn1 = nn.BatchNorm1d(outputChannel)

        self.linear2 = nn.Linear(outputChannel,outputChannel)
        self.bn2 = nn.BatchNorm1d(outputChannel)

        # 短接回路
        self.extra = nn.Sequential()
        if outputChannel != inputChannel:
            self.extra = nn.Sequential(
                nn.Linear(inputChannel, outputChannel),
                nn.BatchNorm1d(outputChannel)
            )

    def forward(self, x):
        # 计算残差块的卷积输出
        out = functional.relu(self.bn1(self.linear1(x)))
        out = self.bn2(self.linear2(out))

        # 计算短接的输出并相加
        out = self.extra(x) + out
        out = functional.relu(out)
        return out

class resNet(nn.Module):
    def __init__(self):
        super(resNet, self).__init__()
        self.linear1=nn.Linear(30,36)
        self.bn1 = nn.BatchNorm1d(36)

        self.blk1 = resBlock(36, 48)
        self.blk2 = resBlock(48, 60)
        self.blk3 = resBlock(60, 72)
        self.blk4 = resBlock(72, 84)

        self.fc=nn.Linear(84,1)

    def forward(self, x):
        x=functional.relu(self.bn1(self.linear1(x)))
        x=functional.relu(self.blk1(x))
        x=functional.relu(self.blk2(x))
        x=functional.relu(self.blk3(x))
        x=functional.relu(self.blk4(x))

        x=functional.relu(self.fc(x))

        return x

具体的样本和训练脚本就不多说了

0

评论区